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In plastic deformation of materials the relation between the
stress tensor Opk and the deformation tensor £y 1is not, generally
speaking, single valued. However, this relation becomes single
valued in the case of the so-called imitial charge, when the
shearing strain intensity P does not diminish with the passing of
time. As shown in (1,2), the free energy of a plastically de-
formed body during the infinitely slow isothermic initial charging §
Fg\ can be expressed as

F=F (0 8 "

S §

— 2 z 2 .
where V =\ = ’\/EL/Q.,%’: 6‘;5 ane- 6{6
is the relative change of volume. (1) can be considered as a general- !

ization from experimental data.

Starting from (1), which has been established for the in-
finitely slow deformation, we can £ind an expression for the free
energy of a body plastically deformed with a final speed Ed/ﬁ’, .
For this, considering the entities P and 6/[ s small, let us

develop (1) into a series according to the powers F and ‘EZZ with

a precision up to mempers of the second degree of smallness.
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Considering that the uniform compression from all sides does not
have any influence on the plastic deformation, we arrive at the

expression

F7 = A% G N Y AT AN

where K 4s the modulus of compression from all sides, /LL is the
shear modulus, Og the yield point in elongation, f7 the {lexi-

pility modulus, and A is the constant.

Tor the stress tensor wWe get

M o B Va6,
o BE, :_V 30*53.}% Muzs(e%%iu&w@u&k

LR 3%k NErm— BEn )
The intensity of shearing stresses
hA - -

§" =N AGi-30% :Oéy‘/aé* 3BT (1)

is the linear intensity function of the shearing stress r‘ . This

corresponds to the linear strengthening.

For the elastic deformation with the same approximation in
the equations (2), (3) and (L) we must assume f%:: /(/l . In the

case of an ideal plasticity (absence of hardening) ﬁ: O .

The ratioff S to ™ in actual materials is represented in
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Tigure l. The ratio S to r’ for the approximation examined here

is shoun in Figure 2.

S—
S—
>

0 r— 0 [
Tigure 1 Figure 2.
The segment OA corresponds to the area of elastic de-
rormation (Hooke's Law), while the segment ABcorresponds to the

area of plastic deformation.

At the final speed of plastic deformation (for the initial
load) the body will not find itself in a statistic equilibrium and
the condition of the body for the isothermlc process will be de=
termined by the deformation tensor ELR and the relaxation tensor
g(’,{q 3)' . The relaxation tensor characterizes the degree

of removal of the system from the condition of statistic equilibrium .

As the system approaches; the condition of statistic e-c&li—
librium the tensor EL@ will tend towards its balance value é ik
The free energy per volume unit will be the function of the invari-
ants formed with the tensors EL‘R and EL&; . TFor a homogeneous
and isotropic body we can form the following invariants out of the

tensors e,{h and E;}ﬁ s

-
— 2 2 z * L, *
LT"—,:% T _..;gf;ma“m -]:3'"\?/’},1/; 14“5‘,;;2 V3E11>

u, 2.

Th= (=" £, 81 )& B £, S)

— Yl [ k.,&"h
Lot 2
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The invariants characterizing the shearing must enter the

expression of free menergy both in the first and second power; the : g
invariants characterizing the change of volume, only in the second

power. The most general invariant in the first power is

VCCI+ I+cI Therefore F‘,M FM(I I 1_1)1‘4,15)1 ’\JQI@-ET%I )

Developing the latter expression into a series and limiting i

ourselves to members of the second degree of smallness, we get
M TR AT Tl +B T BT T8 T BLA T, g i
F: o ok é&f4+AI5+cIE*B‘ I,"‘ alh T Dy la T Pag 5T e )

Let us introduce the tensor @L.‘Q *—EUQ E’

where E’ Lk is the value of E{,,Q determined by the ratio
' BF\’M\ Y

=0

BEik

and let us consider that the removal of the system from the con-

dition of statistic equilibrium is insignificant, i. e., that the
unbalanced meanings of the invariants I,, I-z/ 1"3) I+) I;.‘B'J IQ

differ verly little from their balanced meanings. Therefore (5) [

can be presented as

2 1 ~7 M=B [
FM-.-. A~ K”Eiﬂ,"' 8@”{ V3’5?1)+/Y}3 % T A/-gii{,/s 6%\.4-

N

: +N@y+ (C- W E (0~ V@2 ©
Enm

When Cpb&: O the free energy is minimal. Therefore

N>O, C— 7O,

gLQ—'VagL

o

o
Ei;n-.

memaea

Declassified in Part - Sanitized Copy Approved for Release 2012/05/15 : CIA-RDP82-00039R006200020018-9



Declassified in Part - Sanitized Copy Approved for Release 2012/05/15 : CIA-RDP82-00039R000200020018-9
T I T y i v : P

AT

Because the plastic deformation begins from the entirely deter=- ‘

mined value of intensity of the shearing strain f; , dleee,

' |—l =N %3 /\fgy)\-m‘ l/3£:\‘n 7/ r’o

then

¢ >0, DO, !

£

In order to transfer (5) into (2) with LE: Lk

the ratios —

z | Fa—-
EL-,; Z Z/H 6“2 =M (Eue“ /580 8£b>, én‘ >‘v_£u
where 1, and )\.7_ are the constants, must be fulfilled.

The relaxation tensor Cfp satisfies the equations (3)°

:

(0t 0 8= = [Bui o Bt fun- o bin)]
(7

\ op="" EPVL‘*‘ )‘a_éu?)
(&)

where T is the time of strain relaxation in the plastic area, AC"Z‘
is the time of volume relaxation. In our approximation the time of 0
volume relaxation in the plastic area is equal to the time of vol-

ume relaxation in the elastic area.

The solution of equations (7) and (8) gives us

et

T8 I3 Cubip=viee -, S e E"mm' %‘Ell(tl)g“f] ‘tt(’;) ]
$ i )

\

| ) . ; :
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(20)

where Nk ~ is the value of QL= l/3@118 LR in the initlal

moment of time.

The stress tensor in the unbalance state

2F. ‘ o 36,3_:_‘/5_9_&5&
6'“‘” ai KE 8&‘\’&6 /ben LQ)+W S/A ’\(i—_‘/;—g?n

_ DL >
Cpuguk > ( A"—_——.r N)(@ tk” /5(01\ Lh) -+
(1)

(@:—a’ V&‘%’zf = ¢ 8,
(g Y/ﬁ(e /s Extie),

where Y)z‘ is the second ductility.

With the passage from the elastic area to the plastic the
following conditions must be fulfilled:

nvi

yn _ g0
O’ =0, F =F " .

From these conditions we determine the constants ’Vl; R and
the value of r in the transition point according to the speed of
deformation. This value of the intensity of the shearing strain

will be the maximum value of l" in the area of elastic deformation.

If we say that the evolution of plastic deformation begins

|
*\,
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— b
where ryo"’ 05 S,M) ’U) is the time of shearing
3 relaxation in the elastic area, 72 is the first ductility and ! “ -
q;o is the elongation yield point in infinitely slow deform-

ation.

For the low deformation speed
CPL'IZ: VB@LL&HQ: - >\|’C(Eik‘ V58115‘Lh))
@u:. - )‘?:DJLEU_

and (11) assumes the aspect of V

nJi . 3 E-b, -y{ 8‘;
01"*‘:KEHSLR'FLﬁ(EdR—%ZLLéUQ)"“/\/% O;'M,uﬁ R=Stn e

\15: M '/3£nLn

( D 2 } <l
: Nfzm“h{hh :

Ratios (11), (2), and (13) determine the relation of the

. ‘ yield point and of the maximum elastic deformation %6 the deformation
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speed, the relation of stresses to deformation and to deformation 1
|
| ! speed in plastic deformation, and also the creep curve, all of |

which correspond with the experimental data.
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